相关文章
毕业设计 大数据抖音短视频数据分析与可视化
2024-11-10 18:21

毕设帮助,选题指导,技术解答,欢迎打扰,见B站个人主页

毕业设计 大数据抖音短视频数据分析与可视化

https://space.bilibili.com/33886978

# 读取数据df = pd.read_csv('data.csv')df.head()

df.info()

print('去重前:',df.shape[0],'行数据')print('去重后:',df.drop_duplicates().shape[0],'行数据')

print(np.sum(df.isnull()))

df['date'] = df['date'].astype('datetime64[ns]')df['real_time'] = df['real_time'].astype('datetime64[ns]')df['uid'] = df['uid'].astype('str')df['user_city'] = df['user_city'].astype('str')df['user_city'] = df['user_city'].apply(lambda x:x[:-2])df['item_id'] = df['item_id'].astype('str')df['author_id'] = df['author_id'].astype('str')df['item_city'] = df['item_city'].astype('str')df['item_city'] = df['item_city'].apply(lambda x:x[:-2])df['music_id'] = df['music_id'].astype('str')df['music_id'] = df['music_id'].apply(lambda x:x[:-2])

df.info()

user_city_count = user_info.groupby(['user_city']).count().sort_values(by=['uid'],ascending=False)x1 = list(user_city_count.index)y1 = user_city_count['uid'].tolist()len(y1)

#柱形图代码chart = Bar()chart.add_xaxis(x1)chart.add_yaxis('地区使用人数', y1, color='#F6325A',                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},                      label_opts=opts.LabelOpts(position='top'))chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),                     title_opts=opts.TitleOpts(title="不同地区用户数量分布图",pos_left='40%'),                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'))chart.render_notebook()

h_num = round((df.groupby(['H']).count()['uid']/10000),1).to_list()h = list(df.groupby(['H']).count().index)

chart = Line()chart.add_xaxis(h)chart.add_yaxis('观看数/(万)',h_num, areastyle_opts=opts.AreaStyleOpts(color = '#1AF5EF',opacity=0.3),                                  itemstyle_opts=opts.ItemStyleOpts(color='black'),                                  label_opts=opts.LabelOpts(font_size=12))chart.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),                     title_opts=opts.TitleOpts(title="不时间观看数量分布图",pos_left='40%'),)chart.render_notebook()

left = df.groupby(['H']).sum()[['finish','like']]right = df.groupby(['H']).count()['uid']per = pd.concat([left,right],axis=1)per['finish_radio'] = round(per['finish']*100/per['uid'],2)per['like_radio'] = round(per['like']*100/per['uid'],2)x = list(df.groupby(['H']).count().index)y1 = per['finish_radio'].to_list()y2 = per['like_radio'].to_list()#建立一个基础的图形chart1 = Line()chart1.add_xaxis(x)chart1.add_yaxis('完播率/%',y1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,                                      linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))chart1.set_global_opts(yaxis_opts =  opts.AxisOpts(min_=25,max_=45))chart1.extend_axis(yaxis=opts.AxisOpts(min_=0.4,max_=3))#叠加折线图chart2 = Line()   chart2.add_xaxis(x)chart2.add_yaxis('点赞率/%',y2,yaxis_index=1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,                                            linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))chart1.overlap(chart2) chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),                     title_opts=opts.TitleOpts(title="点赞/完播率分布图",pos_left='40%'),)chart1.render_notebook()

df['weekday'] = df['date'].dt.weekdayweek = df.groupby(['weekday']).count()['uid'].to_list()df_pair = [['周一', week[0]], ['周二', week[1]], ['周三', week[2]], ['周四', week[3]], ['周五', week[4]], ['周六', week[5]], ['周日', week[6]]]chart = Pie()chart.add('', df_pair,radius=['40%', '70%'],rosetype='radius',center=['45%', '50%'],label_opts=opts.LabelOpts(is_show=True,formatter = '{b}:{c}次'))chart.set_global_opts(visualmap_opts=[opts.VisualMapOpts(min_=200000,max_=300000,type_='color', range_color=['#1AF5EF', '#F6325A', '#000000'],is_show=True,pos_top='65%')],                      legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%',orient='vertical'),                     title_opts=opts.TitleOpts(title="一周内播放分布图",pos_left='35%'),)chart.render_notebook()

df.groupby(['channel']).count()['uid']

author_info = df.drop_duplicates(['author_id','item_city'])[['author_id','item_city']]author_info.info()author_city_count = author_info.groupby(['item_city']).count().sort_values(by=['author_id'],ascending=False)x1 = list(author_city_count.index)y1 = author_city_count['author_id'].tolist()df.drop_duplicates(['author_id']).shape[0]

chart = Bar()chart.add_xaxis(x1)chart.add_yaxis('地区创作者人数', y1, color='#F6325A',                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]})chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),                     title_opts=opts.TitleOpts(title="不同城市创作者分布图",pos_left='40%'))chart.render_notebook()

time = df.drop_duplicates(['item_id'])[['item_id','duration_time']]time = time.groupby(['duration_time']).count()x1 = list(time.index)y1 = time['item_id'].tolist()

chart = Bar()chart.add_xaxis(x1)chart.add_yaxis('视频时长对应视频数', y1, color='#1AF5EF',                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},               label_opts=opts.LabelOpts(font_size=12,  color='black'))chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(    range_start=0,range_end=50,orient='horizontal',type_='slider'),    visualmap_opts=opts.VisualMapOpts(max_=100000,min_=200,is_show = False,type_='opacity',range_opacity=[0.4, 1]),                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),                     title_opts=opts.TitleOpts(title="不同时长作品分布图",pos_left='40%'))chart.render_notebook()

like_per = 100*np.sum(df['like'])/len(df['like'])finish_per = 100*np.sum(df['finish'])/len(df['finish'])gauge = Gauge()gauge.add("",[("视频互动率", like_per),['完播率',finish_per]],detail_label_opts=opts.LabelOpts(is_show=False,font_size=18),                                  axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(                                      color=[(0.3, "#1AF5EF"), (0.7, "#F6325A"), (1, "#000000")],width=20)))gauge.render_notebook()

df_cor = df[['finish','like','duration_time','H']] # 只选取部分cor_table = df_cor.corr(method='spearman')cor_array = np.array(cor_table)cor_name = list(cor_table.columns)value = [[i, j, cor_array[i,j]] for i in [3,2,1,0] for j in [0,1,2,3]] heat = HeatMap()heat.add_xaxis(cor_name)heat.add_yaxis("",cor_name,value,label_opts=opts.LabelOpts(is_show=True, position="inside"))heat.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=False, max_=0.08, range_color=["#1AF5EF", "#F6325A", "#000000"]))heat.render_notebook()

temp = df['date'].to_list()puv = df.groupby(['date']).agg({'uid':'nunique','item_id':'count'})uv = puv['uid'].to_list()pv = puv['item_id'].to_list()time = puv.index.to_list()chart1 = Line()chart1.add_xaxis(time)chart1.add_yaxis('uv',uv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,                linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))chart1.add_yaxis('pv',pv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))chart1.render_notebook()

lc = []for i in range(len(time)-7):    bef = set(list(df[df['date']==time[i]]['uid']))    aft = set(list(df[df['date']==time[i+7]]['uid']))    stay = bef&aft    per = round(100*len(stay)/len(bef),2)    lc.append(per)    lc1 = []for i in range(len(time)-1):    bef = set(list(df[df['date']==time[i]]['uid']))    aft = set(list(df[df['date']==time[i+1]]['uid']))    stay = bef&aft    per = round(100*len(stay)/len(bef),2)    lc1.append(per)x7 = time[0:-7]chart1 = Line()chart1.add_xaxis(x7)chart1.add_yaxis('七日留存率/%',lc,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),                     title_opts=opts.TitleOpts(title="用户留存率分布图",pos_left='40%'),)chart1.render_notebook()

df1 = df.groupby(['uid']).agg({'item_id':'count','like':'sum','finish':'sum'})df1['like_per'] = df1['like']/df1['item_id']df1['finish_per'] = df1['finish']/df1['item_id']ndf1 = np.array(df1[['item_id','like_per','finish_per']])#.shapekmeans_per_k = [KMeans(n_clusters=k).fit(ndf1) for k in range(1,8)]inertias = [model.inertia_ for model in kmeans_per_k]chart = Line(init_opts=opts.InitOpts(width='560px',height='300px'))chart.add_xaxis(range(1,8))chart.add_yaxis("",inertias,label_opts=opts.LabelOpts(is_show=False),                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=3,type_= 'solid' ))chart.render_notebook()

n_cluster = 4cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)y_pre = cluster.labels_ # 查看聚好的类from sklearn.metrics import silhouette_scorefrom sklearn.metrics import silhouette_samplessilhouette_score(ndf1,y_pre) n_cluster = 3cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)y_pre = cluster.labels_ # 查看聚好的类from sklearn.metrics import silhouette_scorefrom sklearn.metrics import silhouette_samplessilhouette_score(ndf1,y_pre)

c_ = [[],[],[]]c_[0] = [87.998,9.1615,39.92]c_[1] = [13.292,12.077,50.012]c_[2] = [275.011,8.125,28.751]bar = Bar(init_opts=opts.InitOpts(theme='macarons',width='1000px',height='400px')) # 添加分类(x轴)的数据bar.add_xaxis(['播放数','点赞率(千分之)','完播率(百分之)'])bar.add_yaxis('0', [round(i,2) for i in c_[0]], stack='stack0') bar.add_yaxis('1',[round(i,2) for i in c_[1]], stack='stack1') bar.add_yaxis('2',[round(i,2) for i in c_[2]], stack='stack2') bar.render_notebook()

毕设帮助,选题指导,技术解答,欢迎打扰,见B站个人主页

    以上就是本篇文章【毕业设计 大数据抖音短视频数据分析与可视化】的全部内容了,欢迎阅览 ! 文章地址:http://mip.xhstdz.com/news/5215.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 物流园资讯移动站 http://mip.xhstdz.com/mobile/ , 查看更多   
最新文章
做seo为什么要从白帽seo做起
本人十三君跟着师父十二君做seo也有些时间了,从接触seo以来,发现一个有趣的现象:很多做seo的人员,尤其是新人总想着玩黑帽与
企业工信部备案提交教程(电子化备案)
一、教程目的 本教程主要针对首次备案过程中所需基本信息的填写说明。 (非经营性网站:只要是通过第三方支付࿰
伊金霍洛网站排名优化费用是如何计算的?
伊金霍洛网站seo优化百度搜索引擎关键词快速排名推广提升自然流量点击SEO优化师、网站设计师、梦想者您的流量获取专家“创新互联
【R9s(全网通)搜狗手机输入法下载】OPPO R9s 全网通搜狗手机输入法12.1.1免费下载
搜狗输入法,拥有超大中文词库,输入更加精准,智能。搜狗智能旺仔带你用表达,斗图,妙语,输入更加有趣。******特色功能******
57、曾正忠三部曲 《变化球 Breaking Ball》《迟来的决战 The Last Battle》《无胆狗雄 TATAMI》
水平有限,还望轻喷。\\\ ( 'ω' ) //// 相较去年,重心从挑选top10变成了尽量多列举一些作品,所以今年提及的漫画数量比较
微信公众号及服务号文章爬取
使用Python爬取公众号文章主要两种方法:通过爬取第三方公众号聚合网站通过微信公众平台引用文章接口微信传送门已被封杀,现存可
人工智能板块震荡:投资者应关注AI ETF与软件ETF动态
随着科技的不断发展,人工智能(AI)领域的投资持续引发市场的关注。根据最新市场数据,截至今日收盘,中证人工智能主题指数上涨
男科专题:宁波市男科医院排名更新,宁波普仁男科医院怎么样
男科专题:宁波市男科医院排名更新,宁波普仁男科医院怎么样?男科疾病常常困扰着男性的生活与工作,影响着他们的身心健康。因此
品牌升级前必须思考的5个关键问题
重塑品牌事关重大,改变现有的品牌名称或形象可能会非常冒险。但同时,品牌形象升级也可能恰恰是治愈品牌病痛的不二良方。当企业
城口SEO优化神器,企业线上崛起的利器揭秘
城口SEO优化推广软件,为企业线上崛起提供强劲助力。通过精准关键词优化、网站结构优化等手段,提升网站在搜索引擎排名,吸引潜
相关文章